Dr.-Ing. Henning Höfener

Research Interests

  • Computational Pathology

Publications

Höfener (f.k.a. Kost)

2024

Ghete T, Kock F, Pontones M, Pfrang D, Westphal M, Höfener H, Metzler M (2024) Models for the marrow: A comprehensive review of AI‐based cell classification methods and malignancy detection in bone marrow aspirate smears. HemaSphere 8(12)
Nicke T, Schaefer JR, Hoefener H, Feuerhake F, Merhof D, Kiessling F, Lotz J (2024) Tissue Concepts: supervised foundation models in computational pathology
Schäfer R, Nicke T, Höfener H, Lange A, Merhof D, Feuerhake F, Schulz V, Lotz J, Kiessling F (2024) Overcoming data scarcity in biomedical imaging with a foundational multi-task model. Nat Comput Sci online first

2023

Schacherer DP, Herrmann MD, Clunie DA, Höfener H, Clifford W, Longabaugh WJR, Pieper S, Kikinis R, Fedorov A, Homeyer A (2023) The NCI Imaging Data Commons as a platform for reproducible research in computational pathology. Computer Methods and Programs in Biomedicine 242:107839

2021

Fedorov A, Longabaugh WJR, Pot D, Clunie DA, Pieper S, Aerts HJWL, Homeyer A, Lewis R, Akbarzadeh A, Bontempi D, Clifford W, Herrmann MD, Hofener H, Octaviano I, Osborne C, Paquette S, Petts J, Punzo D, Reyes M, Schacherer DP, Tian M, White G, Ziegler E, Shmulevich I, Pihl T, Wagner U, Farahani K, Kikinis R (2021) NCI Imaging Data Commons. Cancer Res 81(16):4188–4193
Homeyer A, Lotz J, Schwen LO, Weiss N, Romberg D, Höfener H, Zerbe N, Hufnagl P (2021) Artificial intelligence in pathology: From prototype to product. J Pathol Inform 12(1):13

2019

Höfener H (2019) Automated Quantification of Cellular Structures in Histological Images. Ph.D. thesis
Höfener H, Homeyer A, Förster M, Drieschner N, Schildhaus H-U, Hahn HK (2019) Automated Density-based Counting of FISH Amplification Signals for HER2 Status Assessment. Comput Methods Programs Biomed 173:77–85

2018

Höfener H, Homeyer A, Weiss N, Molin J, Lundström CF, Hahn HK (2018) Deep learning nuclei detection: A simple approach can deliver state-of-the-art results. Comput Med Imaging Graph 70:43–52
Homeyer A, Hammad S, Schwen LO, Dahmen U, Höfener H, Gao Y, Dooley S, Schenk A (2018) Focused scores enable reliable discrimination of small differences in steatosis. Diagn Pathol 13(76):1–9
Weiss N, Kost H, Homeyer A (2018) Towards Interactive Breast Tumor Classification Using Transfer Learning. In: Campilho A, Karray F, ter Haar Romeny B (eds) Proceeding of International Conference Image Analysis and Recognition. LNCS 10882, pp 727–736

2017

Homeyer A, Nasr P, Engel C, Kechagias S, Lundberg P, Ekstedt M, Kost H, Weiss N, Palmer T, Hahn HK, Treanor D, Lundström C (2017) Automated quantification of steatosis: agreement with stereological point counting. Diagn Pathol 12(1):80
Kost H, Homeyer A, Molin J, Lundström C, Hahn HK (2017) Training nuclei detection algorithms with simple annotations. J Pathol Inform 8(1):1–9

2016

Kost H, Homeyer A, Bult P, Balkenhol MCA, van der Laak JAWM, Hahn HK (2016) A generic nuclei detection method for histopathological breast images. Proceedings of SPIE Medical Imaging: Digital Pathology. 97911E:pp 1–7