Dr. Stefan Heldmann

Research Interests

  • Image Registration

Publications

2024

Brosig J, Krüger N, Wamala I, Ivantsits M, Sündermann S, Kempfert J, Heldmann S, Hennemuth A (2024) Learning 3D aortic root assessment based on sparse annotations. Proceedings of SPIE Medical Imaging: Computer-Aided Diagnosis 12927:129271S
Geißler K, Mensing D, Wenzel M, Hirsch JG, Heldmann S (2024) Towards TotalSegmentator for MRI data leveraging GIN data augmentation. Proceedings of SPIE Medical Imaging: Image Processing. 1292604
Kohlbrandt T, Moltz J, Heldmann S, Hering A, Lellmann J (2024) Joint Learning of Image Registration and Change Detection for Lung CT Images. In: Maier A, Deserno TM, Handels H, Maier-Hein K, Palm C, Tolxdorff T (eds) Proceedings of German Conference on Medical Image Computing, BVM 2024. Informatik aktuell, pp 46–51
Rörich A, Lange A, Heldmann S, Moltz JH, Walczak L, Yarar-Schlickewei S, Güttler F, Georgii J (2024) Inferring 3D finger bone shapes from 2D images – a detailed analysis of shape accuracy. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 12(1)
Weitz P, Valkonen M, Solorzano L, Carr C, Kartasalo K, Boissin C, Koivukoski S, Kuusela A, Rasic D, Feng Y, Pouplier SS, Sharma A, Eriksson KL, Robertson S, Marzahl C, Gatenbee CD, Anderson ARA, Wodzinski M, Jurgas A, Marini N, Atzori M, Müller H, Budelmann D, Weiss N, Heldmann S, Lotz J, Wolterink JM, De Santi B, Patil A, Sethi A, Kondo S, Kasai S, Hirasawa K, Farrokh M, Kumar N, Greiner R, Latonen L, Laenkholm A-V, Hartman J, Ruusuvuori P, Rantalainen M (2024) The ACROBAT 2022 challenge: Automatic registration of breast cancer tissue. Medical Image Analysis 97:103257

2023

Gerken A, Walluscheck S, Kohlmann P, Galinovic I, Villringer K, Fiebach JB, Klein J, Heldmann S (2023) Deep learning-based segmentation of brain parenchyma and ventricular system in CT scans in the presence of anomalies. Front. Neuroimaging 2:1228255
Hering A, Hansen L, Mok TCW, Chung ACS, Siebert H, Hager S, Lange A, Kuckertz S, Heldmann S, Shao W, Vesal S, Rusu M, Sonn G, Estienne T, Vakalopoulou M, Han L, Huang Y, Yap P-T, Brudfors M, Balbastre Y, Joutard S, Modat M, Lifshitz G, Raviv D, Lv J, Li Q, Jaouen V, Visvikis D, Fourcade C, Rubeaux M, Pan W, Xu Z, Jian B, De Benetti F, Wodzinski M, Gunnarsson N, Sjolund J, Grzech D, Qiu H, Li Z, Thorley A, Duan J, Grosbrohmer C, Hoopes A, Reinertsen I, Xiao Y, Landman B, Huo Y, Murphy K, Lessmann N, van Ginneken B, Dalca AV, Heinrich MP (2023) Learn2Reg: Comprehensive Multi-Task Medical Image Registration Challenge, Dataset and Evaluation in the Era of Deep Learning. IEEE Trans Med Imaging 42(3):697–712
Kuckertz S, Heldmann S, Moltz JH (2023) Efficient Registration of Longitudinal Studies for Follow-Up Lesion Assessment by Exploiting Redundancy and Composition of Deformations. In: Woo J, Hering A, Silva W, Li X, Fu H, et al. (eds) Proceedings of the First MICCAI Workshop on Lesion Evaluation and Assessment with Follow-up (LEAF 2023). LNCS 14394, pp 91–99
Walluscheck S, Canalini L, Klein J, Heldmann S (2023) Unsupervised learning of healthy anatomy for anomaly detection in brain CT scans. Proc. SPIE Medical Imaging 2023: Computer-Aided Diagnosis. 1246504
Walluscheck S, Canalini L, Strohm H, Diekmann S, Klein J, Heldmann S (2023) MR-CT multi-atlas registration guided by fully automated brain structure segmentation with CNNs. Int J CARS 18:483–491

2022

Barann M, Heldmann S, Klein J, Krass S (2022) A Python SDK for Authoring and Using Computer-Interpretable Guidelines. Proc. of the 15th International Joint Conference on Biomedical Engineering Systems and Technologies – BIOINFORMATICS. pp 99–106
Fuchs A, Georgii J, Taghizadeh E, Heldmann S, Lange T, Bendak SF, Siegel M, Yilmaz T, Schmal H, Izadpanah K (2022) In-vivo assessment of meniscal movement in the knee joint during internal and external rotation under load. J Exp Ortop 9:102
Haase R, Heldmann S, Lellmann J (2022) Deformable Groupwise Image Registration using Low-Rank and Sparse Decomposition. J Math Imaging Vis 64(2):194–211
Häger S, Lange A, Heldmann S, Modersitzki J, Petersik A, Schröder M, Gottschling H, Lieth T, Zähringer E, Moltz JH (2022) Robust Intensity-based Initialization for 2D-3D Pelvis Registration (RobIn). In: Maier-Hein K, Deserno TM, Handels H, Maier A, Palm C, Tolxdorff T (eds) Bildverarbeitung für die Medizin 2022. Springer Fachmedien Wiesbaden, Wiesbaden, pp 69–74
Kuckertz S, Klein J, Engel C, Geisler B, Krass S, Heldmann S (2022) Fully automated longitudinal tracking and in-depth analysis of the entire tumor burden: unlocking the complexity. Proc. SPIE Medical Imaging 2022: Computer-Aided Diagnosis. Proc. SPIE 12033, pp 455–459
Lange A, Heldmann S, Moltz JH, Walczak L, Engel C, Detering M, Rörich A, Güttler F, Yarar S, Georgii J (2022) A deformable image-based registration approach to obtain shape correspondence for statistical shape modeling of finger bones. Int J CARS. pp S42–S43
Weber CE, Krämer J, Wittayer M, Gregori J, Randoll S, Weiler F, Heldmann S, Roßmanith C, Platten M, Gass A, Eisele P (2022) Association of iron rim lesions with brain and cervical cord volume in relapsing multiple sclerosis. Eur Radiol 32(3):2012–2022

2021

Hering A, Häger S, Moltz J, Lessmann N, Heldmann S, van Ginneken B (2021) CNN-based lung CT registration with multiple anatomical constraints. Med Image Anal 72:102139
Jäckle S, Lange A, García-Vázquez V, Eixmann T, Matysiak F, Sieren MM, Horn M, Schulz-Hildebrandt H, Hüttmann G, Ernst F, Heldmann S, Pätz T, Preusser T (2021) Instrument Localization for Endovascular Aneurysm Repair – Comparison of two methods based on Tracking Systems or using Imaging. Int J Med Robot Comput Assist Surg 17(6):e2327

2020

Borovec J, Kybic J, Arganda-Carreras I, Sorokin DV, Bueno G, Khvostikov AV, Bakas S, I-Chao Chang E, Heldmann S, Kartasalo K, Latonen L, Lotz J, Noga M, Pati S, Punithakumar K, Ruusuvuori P, Skalski A, Tahmasebi N, Valkonen M, Venet L, Wang Y, Weiss N, Wodzinski M, Xiang Y, Xu Y, Yan Y, Yushkevic P, Zhao S, Muñoz-Barrutia A (2020) ANHIR: Automatic Non-rigid Histological Image Registration Challenge. IEEE Trans Med Imaging 39(10):3042–3052
Kuckertz S, Papenberg N, Honegger J, Morgas T, Haas B, Heldmann S (2020) Deep learning based CT-CBCT image registration for adaptive radio therapy. Proceedings of SPIE Medical Imaging: Image Processing. 113130Q:pp 1–6
Kuckertz S, Papenberg N, Honegger J, Morgas T, Haas B, Heldmann S (2020) Learning Deformable Image Registration with Structure Guidance Constraints for Adaptive Radiotherapy. In: Špiclin Ž, McClelland J, Kybic J, Goksel O (eds) Biomedical Image Registration. LNCS 12120, pp 44–53
Lange A, Heldmann S (2020) Intensity-Based 2D-3D Registration Using Normalized Gradient Fields. In: Tolxdorff T, Deserno TM, Handels H, Maier A, Maier-Hein KH, Palm C (eds) Bildverarbeitung für die Medizin 2020. Springer Fachmedien Wiesbaden, pp 163–168
Lange A, Heldmann S (2020) Multilevel 2D-3D Intensity-Based Image Registration. In: Špiclin Ž, McClelland J, Kybic J, Goksel O (eds) Biomedical Image Registration. LNCS 12120, pp 57–66
Sieren MM, Brenne F, Hering A, Kienapfel H, Gebauer N, Oechtering TH, Fürschke A, Wegner F, Stahlberg E, Heldmann S, Barkhausen J, Frydrychowicz A (2020) Rapid study assessment in follow-up whole-body computed tomography in patients with multiple myeloma using a dedicated bone subtraction software. European Radiology 30:3198–3209

2019

Grob D, Oostveen L, Rühaak J, Heldmann S, Mohr B, Michielsen K, Dorn S, Prokop M, Kachelrieβ M, Brink M, Sechopoulos I (2019) Accuracy of registration algorithms in subtraction CT of the lungs: A digital phantom study. Med Phys 46(5):2264–2274
Hering A, Heldmann S (2019) Unsupervised Learning for Large Motion Thoracic CT Follow-Up Registration. Proceedings of SPIE Medical Imaging: Image Processing. 109491B:pp 1–7
Hering A, Kuckertz S, Heldmann S, Heinrich MP (2019) Enhancing Label-Driven Deep Deformable Image Registration with Local Distance Metrics for State-of-the-Art Cardiac Motion Tracking. Bildverarbeitung für die Medizin 2019. pp 309–314
Hering A, Kuckertz S, Heldmann S, Heinrich MP (2019) Memory-efficient 2.5D convolutional transformer networks for multi-modal deformable registration with weak label supervision applied to whole-heart CT and MRI scans. Int J CARS 14(11):1901–1912
Hering A, van Ginneken B, Heldmann S (2019) mlVIRNET: Multilevel Variational Image Registration Network. In: Shen D, Liu T, Peters TM, Staib LH, Essert C, Zhou S, Yap P-T, Khan A (eds) Proceeding of Medical Image Computing and Computer Assisted Intervention. LNCS 11769, pp 257–265
Jäckle S, Strehlow J, Heldmann S (2019) Shape Sensing with Fiber Bragg Grating Sensors. Bildverarbeitung für die Medizin 2019. pp 258–263

2018

Gregori J, Cornelissen C, S. H, and Treiber MRS, Heldmann S, Klein J, Opfer R, Spies L, Gass A, Ziemsen T, Kitzler H, Weiler F (2018) Feasibility of fully automated atrophy measurement of the upper cervical spinal cord for group analyses and patient-individual diagnosis support in MS. 34th Congress of ECTRIMS – European Committee for Treatment and Research in Multiple Sclerosis. 34th Congress of ECTRIMS – European Committee for Treatment and Research in Multiple Sclerosis (Abstract: A-0950-0023-00837)
Jäckle S, Heldmann S (2018) Rigid Lens – Locally Rigid Approximations of Deformable Registration for Change Assessment in Thorax-Abdomen CT Follow-Up Scans. Image Analysis for Moving Organ, Breast, and Thoracic Images. pp 272–283
Weiler F, Klein J, Gregori J, Spies L, Hildebrandt H, Heldmann S (2018) Fully automatic quantification of mean-upper cervical cord area: Agreement with multiple human raters. International Journal of Computer Assisted Radiology and Surgery. pp 150–151

2017

Lotz JM, Hoffmann F, Lotz J, Heldmann S, Trede D, Oetjen J, Becker M, Ernst G, Maas P, Alexandrov T, Guntinas-Lichius O, Thiele H, von Eggeling F (2017) Integration of 3D multimodal imaging data of a head and neck cancer and advanced feature recognition. Biochim Biophys Acta 1865(7):946–956
Rühaak J, Polzin T, Heldmann S, Simpson IJA, Handels H, Modersitzki J, Heinrich MP (2017) Estimation of Large Motion in Lung CT by Integrating Regularized Keypoint Correspondences into Dense Deformable Registration. IEEE Trans Med Imaging 36(8):1746–1757
Weiler F, Hallmann M, Schwier M, Hildebrandt H, Gregori J, Spies L, Klein J, Heldmann S (2017) Fully automated detection, segmentation and quantification of mean cross-sectional area of the spinal cord. Proceedings of the 7thth joint ECTRIMS – ACTRIMS Meeting. P384

2016

Derksen A, König L, Meine H, Heldmann S (2016) A Joint Registration and Segmentation Approach for Large Bladder Deformations in Adaptive Radiotherapy. Medical Physics: Proceedings of the AAPM 58th annual meeting, Washington, DC. American Association of Physicists in Medicine, 3429
Lotz J, Olesch J, Müller B, Polzin T, Galuschka P, Lotz JM, Heldmann S, Laue H, González-Vallinas M, Warth A, Lahrmann B, Grabe N, Sedlaczek O, Breuhahn K, Modersitzki J (2016) Patch-Based Nonlinear Image Registration for Gigapixel Whole Slide Images. IEEE Transactions on Biomedical Engineering 63(9):1812–1819
Lotz J, Olesch J, Müller B, Polzin T, Galuschka P, Lotz JM, Heldmann S, Laue H, Warth A, Lahrmann B, Grabe N, Sedlaczek O, Breuhahn K, Modersitzki J (2016) Patch-Based Nonlinear Image Registration for Gigapixel Whole Slide Images. IEEE Trans Biomed Eng 63(9):1812–1819

2015

Chen K, Derksen A, Heldmann S, Hallmann M, Berkels B (2015) Deformable Image Registration with Automatic Non-Correspondence Detection. Proc. of 5th International Conference on Scale Space Methods and Variational Methods in Computer Vision. LNCS 9087, pp 360–371
Derksen A, Heldmann S, Polzin T, Berkels B (2015) Image Registration with Sliding Motion Constraints for 4D CT Motion Correction. Bildverarbeitung für die Medizin 2015. Springer Berlin Heidelberg, pp 335–340
Heldmann S, Polzin T, Derksen A, Berkels B (2015) An image registration framework for sliding motion with piecewise smooth deformations. Proc. of 5th International Conference on Scale Space Methods and Variational Methods in Computer Vision. LNCS 9087, pp 335–347
König L, Derksen A, Heldmann S, Papenberg N, Modersitzki J, Haas B (2015) OC-0409: Deformable image registration with guaranteed local rigidity. Radiotherapy and Oncology: Proceedings of the 3rd ESTRO Forum. pp S197–S198
Modersitzki J, Heldmann S, Papenberg N (2015) Nonlinear Registration Via Displacement Fields. In: Toga AW (ed) Brain Mapping. Academic Press, Waltham, pp 307–314
Papenberg N, König L, Heldmann S, Derksen A, Modersitzki J, Haas B (2015) A Locally Variable Transformation Model for Deformable Image Registration Using Tissue Properties. Varian Research Partnership Symposium. Atlanta, Georgia, USA
Rühaak J, Derksen A, Heldmann S, Hallmann M, Meine H (2015) Accurate CT-MR image registration for deep brain stimulation: a multi-observer evaluation study. Proceedings of SPIE Medical Imaging: Image Processing. 941337:pp 1–7
Vicari M, Heldmann S, Meine H, Hug F, Hennig J, Iblher N (2015) Quantitative Assessments of Facial Soft-Tissue Mobility by means of Watershed Segmentation and Constrained Elastic Registration in Upright Accelerated 3D MRI. Proceedings of the 23rd Annual Meeting ISMRM. 4204

2014

Chen K, Heldmann S, Rühaak J, Hallmann M (2014) Construction of Average STN Atlas using Image Registration and Reconstruction. Proc. MICCAI 2014 Workshop on Deep Brain Stimulation Methodological Challenges – 2nd Edition. Boston, USA, pp 1–9
Lotz J, Berger J, Thiele H, Olesch J, Müller B, Breuhahn K, Warth A, Grabe N, Lahrmann B, Sedlaczek O, Heldmann S (2014) Elastic image registration on whole slide images for digital double staining and 3D reconstruction. European Molecular Imaging Meeting – EMIM. Poster Submission at the European Molecular Imaging Meeting – EMIM
Lotz J, Berger J, Müller B, Breuhahn K, Grabe N, Heldmann S, Homeyer A, Lahrmann B, Laue H, Olesch J, Schwier M, Sedlaczek O, Warth A (2014) Zooming in: High Resolution 3D Reconstruction of Differently Stained Histological Whole Slide Images. Proceeding of SPIE Medical Imaging: Digital Pathology. 904104:pp 1–7
Thiele H, Heldmann S, Trede D, Strehlow J, Wirtz S, Dreher W, Berger J, Oetjen J, Kobarg JH, Fischer B, Maass P (2014) 2D and 3D MALDI-imaging: Conceptual strategies for visualization and data mining. Biochim Biophys Acta 1844(1):117–137

2013

Oetjen J, Aichler M, Trede D, Strehlow J, Berger J, Heldmann S, Becker M, Gottschalk M, Kobarg JH, Wirtz S, Schiffler S, Thiele H, Walch A, Maass P, Alexandrov T (2013) MRI-compatible pipeline for three-dimensional MALDI imaging mass spectrometry using PAXgene fixation. J Proteomics 90:52–60
Polzin T, Rühaak J, Werner R, Strehlow J, Heldmann S, Handels H, Modersitzki J (2013) Combining Automatic Landmark Detection and Variational Methods for Lung CT Registration. Proc. Fifth International MICCAI Workshop on Pulmonary Image Analysis (PIA 2013)
Rühaak J, König L, Hallmann M, Papenberg N, Heldmann S, Schumacher H, Fischer B (2013) A Fully Parallel Algorithm for Multimodal Image Registration Using Normalized Gradient Fields. IEEE International Symposium on Biomedical Imaging: From Nano to Macro. San Francisco, California, USA, pp 572–575
Rühaak J, Heldmann S, Kipshagen T, Fischer B (2013) Highly Accurate Fast Lung CT Registration. Proceedings of SPIE Medical Imaging. 86690Y:pp 1–9
Ruhaak J, Heldmann S, Kipshagen T, Fischer B (2013) Highly Accurate Fast Lung CT Registration. Proceedings of SPIE Medical Imaging: Image Processing. SPIE Medical Imaging 2013: Image Processing, 86690Y

2012

Thiele H, Heldmann S, Fischer B (2012) 3D Visualisierung von Organismen. In: Goltz U, Magnor M, Appelrath H-J, Matthies HK, Balke W-T, Wolf L (eds) Proceedings der INFORMATIK 2012. GI-Editon Lecture Notes in Informatics 208, pp 1535–1545
Trede D, Schiffler S, Becker M, Wirtz S, Steinhorst K, Strehlow J, Aichler M, Kobarg JH, Oetjen J, Heldmann S, Walch A, Thiele H, Maass P, Alexandrov T (2012) Exploring 3D MALDI imaging mass spectrometry data: 3D spatial segmentation of mouse kidney. Anal Chem 84(14):6079–6087

2011

Olesch J, Beuthien B, Heldmann S, Papenberg N, Fischer B (2011) Fast intra-operative nonlinear registration of 3D-CT to tracked, selected 2D-ultrasound slices. Proceeding SPIE Medical Imaging. 79642R:pp 1–6
Rühaak J, Heldmann S, Fischer B (2011) Improving Lung Registration by Incorporating Anatomical Knowledge: A Variational Approach. Proc. Fourth International MICCAI Workshop on Pulmonary Image Analysis (PULMO 2011). pp 147–156
Ruhaak J, Heldmann S, Fischer B (2011) Improving Lung Registration by Incorporating Anatomical Knowledge: A Variational Approach. Proc. Fourth International MICCAI Workshop on Pulmonary Image Analysis (PULMO 2011). Proc. Fourth International MICCAI Workshop on Pulmonary Image Analysis (PULMO 2011)

2010

Beuthien B, Papenberg N, Heldmann S, Fischer B (2010) Volume-constrained image registration for pre- and post-operative CT liver data. Proceedings of SPIE Medical Imaging. Medical Imaging 2010: Image Processing, San Diego, California, USA, February 14-16, 2010, 762339:pp 1–8
Heldmann S (2010) Multimodal Registration of MR Images with a Novel Least-squares Distance Measure. Proceedings of SPIE Medical Imaging: Image Processing. 76230A:pp 1–8
Heldmann S, Beuthien B, Olesch J, Papenberg N, Fischer B (2010) Improved Minimal-Invasive Laparoscopic Liver Surgery by Registration of 3D CT and 2D Ultrasound Slices. Proc. BMT, 2010. BMT 2010 – FAL-Sessions, Hot-Topic Sessions, Projektsessions (BMT 2010 – FAL-Sessions – Hot-Topic Se
Heldmann S, Beuthien B, Olesch J, Papenberg N, Fischer B (2010) Improved Minimal-Invasive Laparoscopic Liver Surgery by Registration of 3D CT and 2D Ultrasound Slices. Biomedizinische Technik
Papenberg N, Lange T, Heldmann S, Fischer B (2010) Bildregistrierung. In: Schlag PM, Eulenstein S, LAnge T (eds) Computerassistierte Chirurgie. Urban & Fischer, Elsevier, Münichen, pp 85–118
Papenberg N, Schumacher H, Heldmann S, Böhler T, van Straaten D, Wirtz S (2010) Multimodale Registrierung von Knochen-Szintigraphien und Röntgenbildern. Bildverarbeitung für die Medizin. pp 335–339

2009

Ens K, Heldmann S, Modersitzki J, Fischer B (2009) Improving an affine and non-linear image registration and/or segmentation task by incorporating characteristics of the displacement field. Proceedings of SPIE Medical Imaging. 725932:pp 1–8
Haber E, Heldmann S, Modersitzki J (2009) A Computational Framework for Image-Based Constrained Registration. Linear Algebra and Its Applications 431(3-4):459–470
Haber E, Heldmann S, Modersitzki J (2009) A Scale-Space Approach to Landmark Constrained Image Registration. Proceedings of the Second International Conference on Scale Space and Variational Methods in Computer Vision. pp 612–623
Heldmann S, Papenberg N (2009) A Scale-Space Approach for Image Registration of Vessel Structures. Bildverarbeitung für die Medizin. pp 137–141
Heldmann S, Zidowitz S (2009) Elastic Registration of Multiphase CT Images of Liver. In: Pluim JPW, Dawant BM (eds) Proceedings of SPIE Medical Imaging: Image Processing. Proceedings of the SPIE, 72591H:pp 1–12
Lange T, Papenberg N, Heldmann S, Modersitzki J, Fischer B, Lamecker H, Schlag PM (2009) 3D ultrasound-CT registration of the liver using combined landmark-intensity information. Int J CARS 4(1):79–88

2008

Haber E, Heldmann S, Modersitzki J (2008) Adaptive Mesh Refinement for Nonparametric Image Registration. SIAM J Sci Comput 30(6):3012–3027

2007

Haber E, Heldmann S, Ascher U (2007) Adaptive finite volume method for distributed non-smooth parameter identification. Inverse Problems 23(4):1659–1676
Papenberg N, Schumacher H, Heldmann S, Wirtz S, Bommersheim S, Ens K, Modersitzki J, Fischer B (2007) A Fast and Flexible Image Registration Toolbox – Design and Implementation of the general approach. Bildverarbeitung für die Medizin. SPIE Medical Imaging, pp 106–110

2006

Heldmann S (2006) Non-Linear Registration based on Mutual Information. Ph.D. thesis. Logos Verlag Berlin